Spanning $k$-trees of Bipartite Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spanning $k$-trees of Bipartite Graphs

A tree is called a k-tree if its maximum degree is at most k. We prove the following theorem. Let k ⩾ 2 be an integer, and G be a connected bipartite graph with bipartition (A,B) such that |A| ⩽ |B| ⩽ (k − 1)|A| + 1. If σk(G) ⩾ |B|, then G has a spanning k-tree, where σk(G) denotes the minimum degree sum of k independent vertices of G. Moreover, the condition on σk(G) is sharp. It was shown by ...

متن کامل

Spanning k-Trees of n-Connected Graphs

A tree is called a k-tree if the maximum degree is at most k. We prove the following theorem, by which a closure concept for spanning k-trees of n-connected graphs can be defined. Let k ≥ 2 and n ≥ 1 be integers, and let u and v be a pair of nonadjacent vertices of an n-connected graph G such that degG(u)+degG(v) ≥ |G|−1−(k−2)n, where |G| denotes the order of G. Then G has a spanning k-tree if ...

متن کامل

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

Spanning Trees with Many Leaves in Regular Bipartite Graphs

Given a d-regular bipartite graph Gd, whose nodes are divided in black nodes and white nodes according to the partition, we consider the problem of computing the spanning tree of Gd with the maximum number of black leaves. We prove that the problem is NP hard for any fixed d ≥ 4 and we present a simple greedy algorithm that gives a constant approximation ratio for the problem. More precisely ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2015

ISSN: 1077-8926

DOI: 10.37236/3628